Based on the graph provided (assuming it's a parabola), the family it belongs to is the quadratic family of functions.
Quadratic functions are characterized by the general form f(x) = ax² + bx + c, where a, b, and c are constants, and a ≠ 0. Key characteristics include:
A vertex, representing either the minimum or maximum point of the parabola. The location of the vertex is given by (-b/2a, f(-b/2a)).
An axis of symmetry, a vertical line passing through the vertex that divides the parabola into two symmetrical halves. The equation of this line is x = -b/2a.
Roots or x-intercepts (also called zeros) are the points where the parabola intersects the x-axis, found by solving f(x) = 0. Quadratic equations may have two, one, or no real roots.
The y-intercept is the point where the parabola intersects the y-axis, found by evaluating f(0) = c.
The sign of a determines whether the parabola opens upwards (a > 0) or downwards (a < 0). The magnitude of a also affects the "width" of the parabola; larger values of |a| result in a narrower parabola, while smaller values result in a wider one.
Ne Demek sitesindeki bilgiler kullanıcılar vasıtasıyla veya otomatik oluşturulmuştur. Buradaki bilgilerin doğru olduğu garanti edilmez. Düzeltilmesi gereken bilgi olduğunu düşünüyorsanız bizimle iletişime geçiniz. Her türlü görüş, destek ve önerileriniz için iletisim@nedemek.page